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LElTER TO THE EDITOR 

Ternary vector cross products 

R Shaw 
School of Mathematics, University of Hull, Hull HU6 7RX, U K  

Received 27 March 1987 

Abstract. Ternary vector cross products are studied in their own right. Results include a 
new proof of Hurwitz’s theorem and a ‘principle of duplicity’. Upon breaking the symmetry 
in eight dimensions, by choosing a preferred axis, this last principle implies the well known 
triality principle for octonions and SO(8) transformations. In displaying canonical forms 
it helps to put the eight basis vectors in correspondence with the eight points of the 
three-dimensional affine geometry over F,. 

Let E be a real n-dimensional vector space equipped with a positive definite inner 
product ( , ). For n L 3 a ternary vector cross product for E is defined to be a map 
X : E 3 +  E which satisfies the axioms (cf [l ,  21): 

(i) X is trilinear 

(i i)  

(iii) 

X(a, b, c) is orthogonal to each of a, b, c 

liX(a, b, c)ll = Ila A b A CII. 

Here Ila 1 1 2  = (a, a)  and \la, A .  . . A aril2 denotes the Gram determinant whose i, j entry 
is (ai, a,). Geometrically speaking axiom (iii) asserts that the length of X(a, b, c) is 
equal to the volume of the parallelepiped determined by the vectors a, b, c. A real 
inner product space E, dim E = n L 3, which has been equipped with a preferred ternary 
vector cross product, will be termed a 3Xn algebra. By modifying the axioms in the 
obvious way we obtain the definition of a binary vector cross product X(a, b), and so 
of a 2Xn algebra, n 2 2. More generally, for 2 S r 6 n we have the notion of a rXn 
algebra. 

Each 3Xn algebra E can be converted into a ternary composition algebra, referred 
to as the associated 3Cn algebra, by defining a ternary multiplication { } :  E 3 +  E by 

{ abc} = (a, b)c + (b, c)a - (c, a)b + X (  a, b, c )  

Il{abclII = IIaII llbll IICII. 

(2) 

and noting that it satisfies the property 

(3) 

(The near-miraculous cancellation of terms involved in this check can be given an 
explanation in terms of the Clifford algebra of E.)  Observe that for each choice of 
unit vector e €  E we can obtain a 2Cn algebra, with e as identity, out of our 3Xn 
algebra by defining 

ac = { aec}. (4) 
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Similarly, setting E‘ to be the subspace of E orthogonal to e, we can obtain a 2X( n - 1) 
algebra out of our 3Xn algebra by defining X ( x ,  z )  = X ( x ,  e, z )  for x, z E E ’ .  Also 
associated with a 3Xn algebra is the scalar quadruple product CP defined by 

Axioms (i)  and (ii)  entail that CP is alternating, whence so is X .  
We denote by X + AX the natural action of A E O( E )  upon a ternary vector cross 

product X .  Thus A X ( a ,  b, c )  = A X ( A - ’ a ,  A-’b,  A - ’ c ) .  Equivalently, in terms of CP 
viewed as an element of A4E, we have *CP = (h4A)CP. The automorphism group Aut E 
of a 3Xn algebra E consists of the isotropy group of X :  Aut E = { A  E O ( E ) :  * X  = X } .  

For n = 4 we can make E into a 3x4  algebra in precisely two ways, arrived at by 
taking CP in (5) to be A or -A, where A is a normalised determinant function for E. 
Similarly in dimension n there are precisely two ( n  - 1)Xn algebras. Since * A  = 
(det A ) A  we see in these cases that Aut E = S O ( E )  = SO( n). Of course these ( n  - 1)Xn 
algebras are the obvious generalisations to n dimensions of the familiar 2x3  algebras 
(one ‘right-handed’, the other ‘left-handed’). Indeed (see [3]) almost all the properties 
of a 2x3  algebra receive straightforward generalisations to a ( n  - l)Xn algebra. The 
question arises, do there exist r X n  algebras, 2 r 6 n, other than the ( n  - l )Xn algebras? 
The answer is known (see [ l ,  21) although perhaps a little surprising: there do exist 
‘exceptional’ r X n  algebras, but only of the kinds 2x7 and 3x8. The existence of these 
two kinds of exceptional algebras can be related to the existence of the (not associative) 
2C8 algebra 0 of the octonions-see, for example, [2,4,5]-and usually their properties 
are obtained by appeal to those of the octonions. 

The purpose of this letter is to study 3x8  algebras in their own right, without appeal 
to the octonions. There is some modest virtue in so doing, since a 3x8  algebra E is 
more symmetrical than 0, the respective automorphism groups being Spin(7) and G2 
of dimensions 21 and 14. In the present letter it is an easy matter to obtain the less 
symmetrical from the more symmetrical by making a choice of a(ny) unit vector e E E 
to act as the identity element of 0, as in (4). In the same vein, rather than appeal as 
in [2] to Hurwitz’s theorem, we will instead obtain a neat proof of this theorem (in 
the cases n > 2) arising directly from considering 3Xn algebras in their own right. 
(Unlike the usual proofs (see, e.g., [6]) our version of Hurwitz’s theorem does not 
require us to make a preferred choice of unit vector e E E.) Incidentally we should 
point out that this letter confines itself to a purely algebraic investigation; no mention 
is made of applications to manifolds (cf [4,7]), nor to any bearing upon recent attempts 
(cf [SI) at constructing a unified theory of all physical interactions. 

Properties of 3Xn algebras. For a 3Xn algebra E we define the multiplication operators 
by T a , h ~ = X ( a ,  b. c ) .  They are seen to be skew-adjoint maps E +  E, or equally 

well bivectors-since we make the usual identifications sk( E, E )  = l\*E =SO( E ) .  In 
fact we make more use of the left and right multiplication operators Yo,& and U0.b  of 
the associated 3Cn algebra: 

Note that Ya.b and U0.b  have skew-adjoint parts 2a A b + and 2a A b - Ta,b, respec- 
tively, and that both have (a ,  b ) l  as their self-adjoint part. Some of their properties 
are set out in the following two lemmas. 
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Lemma A. 
( a )  Ya.bYb,a = (la(lZ\\b(121, for all a, b E  E 
(b)  if \ ( a ( (  = (Ib(( = 1, then Ya,bESO(E) 
(C) if (a, b) = 0, then Ya,b = -Yb.a E sk(E, E ) .  

Lemma B. Let { b, c, d }  denote any choice of ordered orthonormal triad of vectors of 
the 3Xn algebra E, and set a = { b , c , d }  ( = X ( b , c , d ) ) .  Let H = < a , b , c , d >  (the 
subspace spanned by a, b, c, d )  and define the involution I I H  E O ( E )  to be +1 on H 
and -1 on H I .  Then 

( a )  Yb,c anticommutes with Yb,d, 

(b )  H is a 3 x 4  subalgebra of E having {a,  b, c, d }  as a positive orthonormal basis 

( c )  for non-zero h, k E H and non-zero p E H I ,  Y h , k  maps H onto H and H I  onto 
(i.e. @(a, 6, c, d )  = +l),  

H I  (and so commutes with I I H ) ,  whilst Y p , h  injects H into H I ,  
( d )  Ya,bYa,cYa,d = nH = -ca,bga,cca,d* 

Proofs. The chief weapon is to use ( 3 )  in its various polarised forms. For example, 
linearising (3)  in the vector c yields ( a )  of lemma A. A subsidiary weapon is the fact 
that we know all concerning a 3 x 4  algebra. In particular, for a 3 x 4  algebra with 
positive orthonormal basis { a ,  b, c, d } ,  we can check that 

Ya,bYa,cYa,d = I = -‘a,bua,cua,d 

and use this in the proof of ( d )  of lemma B. 

Remark. Lemma A, and ( a )  and ( c )  of lemma B, hold if Ya,b is replaced by U,& 

Theorem C. For a 3Xn algebra either n = 4 or n = 8. 

Proof: By axioms (ii) and (iii) we have n 3 4. For n > 4 choose a 3 x 4  subalgebra 
H = <a, b, c, d >  as in lemma B and let p be any non-zero element of H I .  Then ya,p 
is an invertible operator which, by lemma B, anticommutes with I I H .  Hence I IH has 
zero trace, whence dim HI = dim H = 4, and so n = 8. 

Remark. Given a 2Cn algebra E with n > 2 we can suppose it has an identity element 
e and corresponding conjugation K : a h, where 

K a  = ti = 2(a, e)e - a. (7)  
Upon defining X ( a ,  b, c) by (2) with {abc} taken to be (a6)c, we can check that E is 
thereby converted into a 3Xn algebra. Consequently Hurwitz’s theorem for 2Cn 
algebras follows, in the cases n > 2, from theorem C. 

Remark. We will make use of the map K E O J E )  later on for a 3x8 algebra E. In 
ternary notation note that K = where pa,, is the ‘middle multiplication’ operator 
b H { abc}. 

3 x 8  algebras. A pleasing feature of a 3x8 algebra E is that each 3 x 4  subalgebra 
comes along with a ‘partner’ P = H I  which is also a 3 x 4  subalgebra. 

Theorem D. If H is a 3 x 4  subalgebra of a 3x8 algebra E, then so is P =  H I .  

Proof: Consider the identity ( h ,  {pqr } )  = ( ( T h , p q ,  r).  Setting h E H and p ,  q, r E P our 
previous results entail that the RHS is zero. Hence {pqr }  E P. 
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Theorem E. Ternary vector cross products on E, dim E = 8, fall into two O ( 8 )  orbits: 
type I U type 11. If X E type I then - X  E type 11. Each O ( 8 )  orbit splits into two SO(8) 
orbits, say I R u  I L  and I I R u  IIL.  

Proof: For E = H O P  as in theorem D choose unit vectors h E H, p E P and note that 
a p , h ,  y p , h  are isometrics which map H onto P (and P onto H ) .  A dichotomy arises: 
either Y p , h  (type I, say) or a p , h  (type 11, say) maps a positive orthonormal basis for H 
onto a positive orthonormal basis for P. Replacing X by - X  amounts to the interchange 
of a p p . h  and Y p , h .  Finally X defines an  orientation of E via a positive basis for H 
together with a positive basis for P. 

From now on we consider 3 x 8  algebras of type I. For such an  algebra E the following 
is true: choose any 3 x 4  subalgebra H and choose any unit vectors h E H, p E P = H-; 
then y p , h ,  suitably restricted, defines an  isomorphism of the 3 x 4  algebras H and P. 
(This follows from the foregoing dichotomy upon using a continuity argument.) A 
canonical form for the 3 x 8  algebra E can now be obtained, with respect to a canonical 
orthonormal basis { e ,  ; a = 0, 1, 2, 3, 0’, l‘, 2’, 3‘} constructed as follows. Choose any 
othonormal triad {e, ,  e , ,  e3} ,  set e, = {e, e2eJ and, for any choice of unit vector e,. E 

<e , ,  e , ,  e,, e 3 > l ,  define e , , =  {e,,e,e,}. The fact that all eight canonical axes enter 
democratically into the ensuing canonical form can be highlighted by putting the eight 
basis vectors e, in a one-to-one correspondence with the eight points denoted, say, by 

0, 1, 2, 3, Of, l‘, 2’, 3’ 

of the finite three-dimensional affine geometry d over the field F, of order 2. In this 
geometry there are seven quadruples of mutually parallel lines (each line consisting 
of two points) which we take to be 

01 23 3‘2‘ 1’0’ 

02 31 1’3’ 2’0’ 

03 12 2’1’ 3‘0’ 

00’ 11’ 22’ 33’ 

01’ 3’2 32’ 0’1 

02‘ 1’3 13’ 0’2 

03’ 2’1 21’ 0’3 

and seven pairs ( A ,  A * )  of parallel planes 

A =0123 011‘0‘ 022’0’ 033’0’ 013’2’ 021’3‘ 032‘1’ 

A *  =0‘1’2’3’ 233‘2‘ 311’3’ 122’1’ 0’1‘32 0‘2’13 0’3’21. 
(9) 

(One can view the eight points of SP as the vertices of a cube in three dimensions, 
with for example 0123 and 0’1’2‘3’ as the inscribed ‘tetrahedra’. However, one has to 
remember that these ‘tetrahedra’ are in fact planes. Moreover one has to remember 
that the two ‘diagonals’ of each square face are parallel.) 

For the purposes of displaying our canonical forms a further refinement is necessary: 
the two orderings ab and ba of the points of a line will be distinguished, and we will 
view the lines of a quadruple in (8) as ‘strictly parallel’ (rather than ‘antiparallel’), 
which we write as ‘-’, when the order is as displayed. So, for example, we have 

(10) 00’- 11’-22’-33‘. 
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The scheme (8) is consistent with '-' being an  equivalence relation which obeys the 
following rule: 

if a, b, c, d are distinct, then ab - cd implies ad - bc. (11)  

In fact, using this rule, the whole scheme (8) follows from, for example, (10) combined 
with, for example, 01 - 23. Moreover the order in which we write the points abcd of 
each plane in (9) is determined, up to an even permutation, by the requirement ab - cd. 

In  terms of the multiplication operators yU+ our canonical form is seen to be given 
by 

yo,,= y, , .= y,,,= y33,= - ( J , , , + J , , . + J 2 2 . + J 3 3 ' )  (12) 

together with six other analogous equations read off from the scheme (8). Here we 
have set Jab = -2e,  A eb and have also, for U = e,, U = eh, written yu,r. as y o b .  (Inciden- 
tally, in the notation of lemma B, we have the properties 7 a . b  = y c , d  and (+a,b(+c,d = nH. 
Moreover (+u,v(+u,H, = (U, u ) ( + , , ~ ,  holds for all U ,  U ,  w E E.)  

In terms of Qaabcd = @ ( e , ,  eh, e, ,  e d )  our canonical form asserts that @&d equals 
+1(-1) whenever abcd is an even (odd) permutation of one of the fourteen values in 
(9), and equals zero otherwise. Considering @ as an element of A4E we have a =  
2, (OA + QA*)  where, for example, if A = 0123 then @ A  = e,  A e ,  A e, A e3 and Q A *  = e,, A 

e , .  A e2, A e 3 , .  Granted that we define the star operator A4E+A4E with respect to the 
orientation on E defined (see the proof of theorem E) by X ,  observe that @ is self-dual: 
*@ = +@. Observe also that for any choice of unit vector e E E we can express @ E A 4 E  
in the form 

@ = e  A 4 +*,+ (13) 
where 4 E A 3 E ' ,  E ' =  <e>' and *7 is a star operator A 3 E ' +  A4E'c  A4E. 

Each pair (A,  A*) of parallel affine planes in (9) is associated with a decomposition 
E = H A O ( H A ) I  of the 3 x 8  algebra E into two 3 x 4  subalgebras. Thus for A = 0123 
we have H A  = < e o ,  e , ,  e , ,  e3> and H A *  = ( H A ) ) i  = <e,., e , , ,  e l . ,  e3 ,> .  Equally well the 
pair ( A ,  A*)  is associated with a pair (nA, -n") of involutions E SO( E ) ,  where nA = nH*. 
The seven involutions n" mutually commute, which goes along (see, e.g., [9]) with 
the fact the fourteen 3 x 4  subalgebras H A ,  (HA)L are mutually compatible subspaces 
of E. Notice that for A # p we have d im(HA n H " )  = 2-corresponding to the fact 
that the distinct non-parallel affine planes A, /I intersect in the two points of an affine 
line. 

We move now to some results concerning SO(8) and triality. Let M denote the self- 
adjoint operator on A * E = s k ( E ,  E ) = s o ( E ) = s o ( 8 )  which is defined by 8 0  A b -  
u a , b  - (+b.a. Then one shows that M 2  = I and that M is an outer automorphism of the 
Lie algebra so(8). Define N = K M ,  i.e. N = LML where L =  A ' K :  B +  K B K .  (If M 
arises from X E type IR, N arises in the same manner from K X  E type IL.) One finds 
that LM = M N  = N L  ( = Q ,  say), whence R2 = M L  = N M  = L N  and f13 = I. Then { I ,  
L, M,  N,  Q, a'} -- S3 forms a group of outer automorphisms of so(8). 

Theorem F ('principle of duplicity '). Given any A E SO( 8) there are precisely two SO( 8) 
transformations *A' such that A{abc} = {AaA'bA'c}. 

Proof: For any automorphism 0 of the Lie algebra s k ( E ,  E ) = = s o ( 8 )  the local 
automorphism 6 of the Lie group S O ( E ) = S 0 ( 8 ) ,  defined locally by B(exp B )  = 
exp 0 B, satisfies 
@.Ad A = Ad(B(A))oO (14) for A in some neighbourhood of I in SO(8). 
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Setting 0 = M we evaluate (14) upon the bivector c A b, then evaluate the resulting 
skew-adjoint maps upon a E E to obtain 

A { a b c } = { A a m ( A ) b m ( A ) c }  (locally). (15) 

Remark. If we pass to the octonionic binary multiplication as in (4) (thereby losing 
symmetry) the above ‘principle of duplicity’ is seen to imply the well known (see 
[ 10,111) triality principle. For (15) yields the result A ( a c )  = ( n ( A ) a ) (  m ( A ) c ) ,  valid 
locally, or equivalently, noting that / ( A )  = K A K  

A(=) = ( u ( A ) a ) ( w ’ ( A ) ~ )  (locally). 

Remark. A possible definition of Spin(8) is as that subgroup of SO(8) x SO(8) which 
consists of all duplicity pairs ( A ,  A’) ,  i.e. as in theorem F. The covering homomorphism 
Spin(8)-S0(8) is ( A ,  A ‘ ) - A  and has kernel ~ 2 ,  consisting of ( I ,  I), (I - I), which 
last are seen to be connected in Spin(8) as defined. 

Remark. As is well known, the automorphisms L, M, N keep fixed subalgebras so(7), 
spinR(7) and spinL(7) of so(8). These three subalgebras of dimension 21 are cyclically 
permuted by the triality automorphisms R, R2, and their common intersection is a 
subalgebra g, of dimension 14. The automorphisms of the 3x8  algebra E, which form 
a subgroup SpinR(7) of S0(8),  are arrived at as the special case m ( A )  = * A  of (15). 

A typical SpinR(7) transformation is 

A = R O O ~ ( ~ O ) R , , ~ ( ~ , ) R 2 2 ’ ( ~ 2 ) ~ 3 3 ’ ( ~ 3 )  (with eo + e, + e2 + e, = 0) (16) 

where R,,,(O,) denotes the rotation exp(B,J,,.) through an angle 0, in the oriented 
plane < e,, e,, > . The condition Z 8, = 0 on the angles 8, ensures that the generator 
E’,=,, e,J,,. is orthogonal to the -1 eigenspace of M (which is spanned by the yob 
typified by (12)) and hence lies in the +1 eigenspace spinR(7) of M. 

The author wishes to record his thanks to Anthony Sudbery for helpful and encouraging 
discussions concerning the above work. 
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